Interval Pattern Concept Lattice as a Classifier Ensemble
نویسندگان
چکیده
Decision tree learning is one of the most popular classification techniques. However, by its nature it is a greedy approach to finding a classification hypothesis that optimizes some information-based criterion. It is very fast but may lead to finding suboptimal classification hypotheses. Moreover, in spite of decision trees being easily interpretable, ensembles of trees (random forests and gradient-boosted trees) are not, which is crucial in some domains, like medical diagnostics or bank credit scoring. In case of such “small, but important-data” problems one is not obliged to perform a greedy search for classification hypotheses, and therefore alternatives to decision tree learning techniques may be considered. In this paper, we propose an FCA-based classification technique where each test instance is classified with a set of the best (in terms of some information-based criterion) classification rules. In a set of benchmarking experiments, the proposed strategy is compared with decision tree and nearest neighbor learning.
منابع مشابه
Classifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملCombining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملCombining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملA Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...
متن کاملComparative Study on Classification of Ecg Arrhythmia Using Single Classifier and Ensemble of Classifiers
An electrocardiogram (ECG) is a bioelectrical signal which records the heart’s electrical activity versus time. The interpretation of ECG signal is an application of pattern recognition. The techniques used in this paper comprise: signal preprocessing, R peak detection, QRS reconstruction, RR interval detection, feature extraction and linear classifier model versus ensemble of classifier model....
متن کاملFault Detection of Bearings Using a Rule-based Classifier Ensemble and Genetic Algorithm
This paper proposes a reduct construction method based on discernibility matrix simplification. The method works with genetic algorithm. To identify potential problems and prevent complete failure of bearings, a new method based on rule-based classifier ensemble is presented. Genetic algorithm is used for feature reduction. The generated rules of the reducts are used to build the candidate base...
متن کامل